Mario Dipoppa

Title(s)Assistant Professor, Neurobiology
SchoolMedicine
ORCID ORCID Icon0000-0002-4454-4224 Additional info
vCardDownload vCard

    Collapse Overview 
    Collapse Overview
    Dr. Mario Dipoppa seeks to understand the neural mechanisms underlying cortical brain functions. He obtained his Ph.D. at Pierre and Marie Curie University where he developed neural circuit models underlying working memory, under the guidance of Boris Gutkin. He then joined as a postdoc in the laboratory of Kenneth Harris and Matteo Carandini at University College London and was the recipient of the Marie Curie Fellowship. As a postdoc, Dr. Dipoppa combined large-scale neural recordings and computational models to study the mouse visual system. He then served as an Associate Research Scientist at the Center for Theoretical Neuroscience of Columbia University advised by Ken Miller. There, he combined deep learning with dynamical systems methods to study fundamental properties of visual computations. Dr. Dipoppa’s computational neuroscience laboratory continues to investigate how neural networks and dynamics in the cerebral cortex give rise to neural computation. Despite the complexity of their operations, cortical circuits are stereotypical which may underlie common computations. To discover the governing principles of these canonical circuits, Dr. Dipoppa’s laboratory combines state-of-the-art approaches, including biologically realistic neural networks, artificial (deep and recurrent) neural networks, and encoding and decoding models.

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Contrast gain control is a reparameterization of a population response curve. J Neurophysiol. 2024 Sep 18. Tring E, Moosavi SA, Dipoppa M, Ringach DL. PMID: 39292873.
      View in: PubMed   Mentions:    Fields:    Translation:AnimalsCells
    2. Contrast gain control is a reparameterization of a population response curve. bioRxiv. 2024 Jul 30. Tring E, Moosavi SA, Dipoppa M, Ringach DL. PMID: 39131329; PMCID: PMC11312465.
      View in: PubMed   Mentions:
    3. On the contrast response function of adapted neural populations. J Neurophysiol. 2024 02 01; 131(2):446-453. Tring E, Dipoppa M, Ringach DL. PMID: 38264786; PMCID: PMC11305633.
      View in: PubMed   Mentions: 2     Fields:    Translation:Cells
    4. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nat Commun. 2023 Dec 15; 14(1):8366. Tring E, Dipoppa M, Ringach DL. PMID: 38102113; PMCID: PMC10724159.
      View in: PubMed   Mentions: 4     Fields:    Translation:AnimalsCells
    5. On the contrast response function of adapted neural populations. bioRxiv. 2023 Oct 10. Tring E, Dipoppa M, Ringach DL. PMID: 37873350; PMCID: PMC10592696.
      View in: PubMed   Mentions:
    6. A power law of cortical adaptation. bioRxiv. 2023 May 22. Tring E, Dipoppa M, Ringach DL. PMID: 37292876; PMCID: PMC10245856.
      View in: PubMed   Mentions:
    7. A transcriptomic axis predicts state modulation of cortical interneurons. Nature. 2022 07; 607(7918):330-338. Bugeon S, Duffield J, Dipoppa M, Ritoux A, Prankerd I, Nicoloutsopoulos D, Orme D, Shinn M, Peng H, Forrest H, Viduolyte A, Reddy CB, Isogai Y, Carandini M, Harris KD. PMID: 35794483; PMCID: PMC9279161.
      View in: PubMed   Mentions: 45     Fields:    Translation:AnimalsCells
    8. A human-specific modifier of cortical connectivity and circuit function. Nature. 2021 11; 599(7886):640-644. Schmidt ERE, Zhao HT, Park JM, Dipoppa M, Monsalve-Mercado MM, Dahan JB, Rodgers CC, Lejeune A, Hillman EMC, Miller KD, Bruno RM, Polleux F. PMID: 34707291; PMCID: PMC9161439.
      View in: PubMed   Mentions: 31     Fields:    Translation:HumansAnimalsCells
    9. Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. PLoS Comput Biol. 2021 09; 17(9):e1009439. Whiteway MR, Biderman D, Friedman Y, Dipoppa M, Buchanan EK, Wu A, Zhou J, Bonacchi N, Miska NJ, Noel JP, Rodriguez E, Schartner M, Socha K, Urai AE, Salzman CD, International Brain Laboratory, Cunningham JP, Paninski L. PMID: 34550974; PMCID: PMC8489729.
      View in: PubMed   Mentions: 12     Fields:    Translation:Animals
    10. A Disinhibitory Circuit for Contextual Modulation in Primary Visual Cortex. Neuron. 2020 12 23; 108(6):1181-1193.e8. Keller AJ, Dipoppa M, Roth MM, Caudill MS, Ingrosso A, Miller KD, Scanziani M. PMID: 33301712; PMCID: PMC7850578.
      View in: PubMed   Mentions: 44     Fields:    Translation:AnimalsCells
    11. Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex. Neuron. 2018 05 02; 98(3):602-615.e8. Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD. PMID: 29656873; PMCID: PMC5946730.
      View in: PubMed   Mentions: 125     Fields:    Translation:AnimalsCells
    12. Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony. Adv Cogn Psychol. 2016; 12(4):209-232. Dipoppa M, Szwed M, Gutkin BS. PMID: 28154616; PMCID: PMC5280056.
      View in: PubMed   Mentions: 10  
    13. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish. Cell Rep. 2016 12 13; 17(11):3089. Pérez-Schuster V, Kulkarni A, Nouvian M, Romano SA, Lygdas K, Jouary A, Dipoppa M, Pietri T, Haudrechy M, Candat V, Boulanger-Weill J, Hakim V, Sumbre G. PMID: 27974219; PMCID: PMC5638786.
      View in: PubMed   Mentions: 3     Fields:    
    14. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish. Cell Rep. 2016 10 18; 17(4):1098-1112. Pérez-Schuster V, Kulkarni A, Nouvian M, Romano SA, Lygdas K, Jouary A, Dipoppa M, Pietri T, Haudrechy M, Candat V, Boulanger-Weill J, Hakim V, Sumbre G. PMID: 27760314; PMCID: PMC5081404.
      View in: PubMed   Mentions: 13     Fields:    Translation:AnimalsCells
    15. Correlations in background activity control persistent state stability and allow execution of working memory tasks. Front Comput Neurosci. 2013; 7:139. Dipoppa M, Gutkin BS. PMID: 24155714; PMCID: PMC3801087.
      View in: PubMed   Mentions: 9  
    16. Flexible frequency control of cortical oscillations enables computations required for working memory. Proc Natl Acad Sci U S A. 2013 Jul 30; 110(31):12828-33. Dipoppa M, Gutkin BS. PMID: 23858465; PMCID: PMC3732977.
      View in: PubMed   Mentions: 29     Fields:    Translation:HumansCells
    17. Electron-hole interaction in carbon nanotubes: novel screening and exciton excitation spectra. Nano Lett. 2009 Apr; 9(4):1330-4. Deslippe J, Dipoppa M, Prendergast D, Moutinho MV, Capaz RB, Louie SG. PMID: 19271768.
      View in: PubMed   Mentions: 5     Fields:    
    Mario's Networks
    Concepts (57)
    Derived automatically from this person's publications.
    _
    Co-Authors (2)
    People in Profiles who have published with this person.
    _
    Similar People (60)
    People who share similar concepts with this person.
    _
    Same Department
    Search Department
    _