Elissa A Hallem

Title(s)Professor, MIMG
SchoolMedicine
ORCID ORCID Icon0000-0003-0260-3174 Additional info
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Williams College, Williamstown, MABA06/1999Biology and Chemistry
    Yale University, New Haven, CTPhD05/2005Neuroscience
    Caltech, Pasadena, CAPostdoc12/2010Biology
    Collapse Awards and Honors
    2023UCLA Life Sciences Excellence in Research Award
    2020UCLA Faculty Mentor Award
    2016HHMI Faculty Scholar Award
    2015UCLA DGSOM John H. Walsh Young Investigator Research Prize
    2015Burroughs-Wellcome Fund Investigators in the Pathogenesis of Disease Award
    2014NIH Director's New Innovator Award
    2013UCLA Dean's Recognition Award
    2013McKnight Scholar Award
    2012Searle Scholar Award
    2012MacArthur Fellowship
    2011Rita Allen Foundation Fellowship
    2011Alfred P. Sloan Research Fellowship

    Collapse Overview 
    Collapse Overview
    Our research focuses on sensory circuit function in parasitic and free-living animals, and lies at the interface of neurobiology and parasitology. Nearly all organisms respond to sensory stimuli, but how sensory circuits specify behavior is poorly understood. We are investigating the neural basis of sensory behaviors in the context of human parasitism. We use parasitic nematodes and the free-living nematode C. elegans as models. The goals of our research are to understand how parasitic worms use sensory cues to locate and infect hosts, how sensory circuits of parasitic animals differ from those of free-living animals to enable parasitic behaviors, and how sensory microcircuits generate flexible outputs. Our research addresses fundamental questions of sensory circuit function and evolution. In addition, human-parasitic worms are a major cause of morbidity worldwide, and a better understanding of their behaviors may enable the development of novel strategies for preventing infections.

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Invade or die: behaviors and biochemical mechanisms that drive skin penetration in Strongyloides and other skin-penetrating nematodes. Phil Trans R Soc B. 2023; 379:20220434. McClure CR, Patel R, Hallem EA . View Publication.
    2. A standard workflow for community-driven manual curation of Strongyloides genome annotations. Phil Trans R Soc B. 2023; 379:20220443. Bryant AS, Akimori D, Stoltzfus JDC, Hallem EA. View Publication.
    3. Strongyloides questions-a research agenda for the future. Phil Trans R Soc B. 2023; 379:20230004. Al-Jawabreh R, Anderson R, Atkinson LE, Bickford-Smith J, Bradbury RS, Breloer M, Bryant AS, Buonfrate D, Cadd LC, Crooks B, Deiana M, Grant W, Hallem E, Hedtke SM, Hunt V, Khieu V, Kikuchi T, Kounosu A, Lastik D, van Lieshout L, Liu Y, McSorley HJ, McVeigh P, Mousley A, Murcott B, Nevin WD, Nosková E, Pomari E, Reynolds K, Ross K, Streit A, Suleiman M, Tiberti N, Viney M. View Publication.
    4. Introduction to Strongyloides stercoralis Anatomy. WormAtlas. 2023. Castelletto ML, Akimori D, Patel R, Schroeder NE, Hallem EA. View Publication.
    5. Differential processing of a chemosensory cue across life stages sharing the same valence state in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2023; 120:e2218023120. Banerjee N, Shih PY, Rojas Palato EJ, Sternberg PW, Hallem EA. View Publication.
    6. Editorial - Strongyloides research in the post-genomics era. Mol Biochem Parasitol. 2022; 252:111522. Atkinson LE, Hallem EA. View Publication.
    7. Making sense of sensory behaviors in vector-borne helminths. Trends Parasitol. 2022; 38:841-853. Wheeler NJ, Hallem EA, Zamanian M. View Publication.
    8. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol Biochem Parasitol. 2022; 250:111491. Mendez P, Walsh B, Hallem EA. View Publication.
    9. The neural basis of heat seeking in a human-infective parasitic worm. Curr Biol. 2022; 32:2206-2221. Bryant AS, Ruiz F, Lee JH, Hallem EA. View Publication.
    10. Olfaction: One receptor drives opposite behaviors. Curr Biol. 2022; 32:R93-R96. Patel R, Hallem EA. View Publication.
    11. Generating Transgenics and Knockouts in Strongyloides Species by Microinjection. J Vis Exp. 2021; 176:10.3791/63023. Castelletto ML, Hallem EA. View Publication.
    12. Skin-penetrating nematodes exhibit life-stage-specific interactions with host-associated and environmental bacteria. BMC Biol. 2021; 19:221. Chavez IN, Brown TM, Assié A, Bryant AS, Samuel BS, Hallem EA. View Publication.
    13. The Wild Worm Codon Adapter: a web tool for automated codon adaptation of transgenes for expression in non-Caenorhabditis nematodes. G3. 2021; 11:jkab146. Bryant AS, Hallem EA. View Publication.
    14. Steroid hormone pathways coordinate developmental diapause and olfactory remodeling in Pristionchus pacificus. Genetics. 2021; 218:iyab071. Carstensen HR, Villalon RM, Banerjee N, Hallem EA, Hong RL. View Publication.
    15. Strongyloides RNA-seq Browser: a web-based software platform for on-demand bioinformatics analyses of Strongyloides species. G3. 2021; 11:jkab104. Bryant AS, DeMarco SF, Hallem EA. View Publication.
    16. Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes. Proc Natl Acad Sci USA. 2020; 117:17913-17923. Gang SS, Castelletto ML, Yang E, Ruiz F, Brown TM, Bryant AS, Grant WN, Hallem EA. View Publication.
    17. The role of carbon dioxide in nematode behavior and physiology. Parasitol. 2020; 147:841-854. Banerjee N, Hallem EA. View Publication.
    18. Recent advances in functional genomics for parasitic nematodes of mammals. J Exp Biol. 2020; 223:jeb206482. Castelletto ML, Gang SS, Hallem EA. View Publication.
    19. Decoding Inter-individual Variability in Experience-Dependent Behavioral Plasticity. Neuron. 2020; 105:7-9. Banerjee N, Hallem EA. View Publication.
    20. Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2019; 116:1776-1781. Rengarajan S, Yankura KA, Guillermin ML, Fung W, Hallem EA. View Publication.
    21. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist. 2018; 8:496-510. Bryant AS, Hallem EA. View Publication.
    22. Temperature-dependent behaviors of parasitic helminths. Neurosci Lett. 2018; 687:290-303. Bryant AS, Hallem EA. View Publication.
    23. A Critical Role for Thermosensation in Host Seeking by Skin-Penetrating Nematodes. Curr Biol. 2018; 28:2338-2347. Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA. View Publication.
    24. Sexual Dimorphisms: How Sex-Shared Neurons Generate Sex-Specific Behaviors. Curr Biol. 2018; 28:R254-R256. Banerjee N, Hallem E. View Publication.
    25. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog. 2017; 13:e1006709. Ruiz F, Castelletto ML, Gang SS, Hallem EA. View Publication.
    26. Targeted mutagenesis in a human-parasitic nematode. PLoS Pathog. 2017; 13:e1006675. Gang SS, Castelletto ML, Bryant AS, Yang E, Mancuso N, Lopez JB, Pellegrini M, Hallem EA. View Publication.
    27. A Single Set of Interneurons Drives Opposite Behaviors in C. elegans. Curr Biol. 2017; 27:2630-2639. Guillermin ML, Carrillo MA, Hallem EA. View Publication.
    28. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis. J Biol Chem. 2017; 292:6680-6694. Park HB, Sampathkumar P, Perez CE, Lee JH, Tran J, Bonanno JB, Hallem EA, Almo SC, Crawford JM. View Publication.
    29. Olfactory Preferences of the Parasitic Nematode Howardula aoronymphium and its Insect Host Drosophila falleni. J Chem Ecol. 2017; 43:362-373. Cevallos JA, Okubo RP, Perlman SJ, Hallem EA. View Publication.
    30. Olfactory circuits and behaviors of nematodes. Curr Opin Neurobiol. 2016; 41:136-148. Rengarajan S, Hallem EA. View Publication.
    31. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol. 2016; 208:23-32. Gang SS, Hallem EA. View Publication.
    32. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 2016; 14:36. Lee JH, Dillman AR, Hallem EA. View Publication.
    33. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Infect Immun. 2015; 83:1130-1138. Peña JM, Carrillo MA, Hallem EA. View Publication.
    34. Diverse host-seeking behaviors of skin-penetrating nematodes. PLoS Pathog. 2014; 10:e1004305. Castelletto ML, Gang SS, Okubo RP, Tselikova AA, Nolan TJ, Platzer EG, Lok JB, Hallem EA. View Publication.
    35. O2-sensing neurons control CO2 response in C. elegans. J Neurosci. 2013; 33:9675-983. Carrillo MA, Guillermin ML, Rengarajan S, Okubo RP, Hallem EA. View Publication.
    36. Chemosensory behaviors of parasites. Trends Parasitol. 2012; 28:427-436. Chaisson KE, Hallem EA. View Publication.
    37. Olfaction shapes host-parasite interactions in parasitic nematodes. Proc Natl Acad Sci USA. 2012; 109:E2324-E2333. Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA. View Publication.
    38. Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor. Genetics. 2011; 189:1327-1339. Guillermin ML, Castelletto ML, Hallem EA. View Publication.